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Motivation

Packed bed with 146 pebbles, video credit: YuHsiang Lan
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Literature

• What’s already out there?

• Fischer et. al [1] introduce p-multigrid preconditioner based on

an approximate overlapping Schwarz solve through the fast

diagonalization method (FDM).

• Sundar et. al [2] investigate performance of

Chebyshev-accelerated block Jacobi smoothers, even

suggesting the usage of Fischer’s overlapping Schwarz solver as

an approximate inverse.

• What am I contributing in this talk?

• Combine Fischer’s approximate Schwarz solver and Chebyshev

smoothers, creating a Chebyshev-accelerated Schwarz scheme.

• Comparison between Schwarz, Chebyshev-accelerated Jacobi,

and Chebyshev-accelerated Schwarz as smoothers in multigrid

preconditioner.
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Chebyshev Smoother

Algorithm 1: Chebyshev smoother

Input: S, eigenvalue estimates of SA (λmin, λmax)

θ =
1

2
(λmax + λmin), δ =

1

2
(λmax − λmin), σ =

θ

δ
, ρ1 =

1

σ

r = S(b − Ax), d1 =
1

θ
r , x1 = 0

for k = 1, . . . , chebyshevOrder do

xk+1 = xk + dk

rk+1 = rk − SAdk

ρk+1 =
1

2σ − ρk

dk+1 = ρk+1ρkdk +
2ρk+1

δ
rk+1

end

xk+1 = xk + dk

return xk+1
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Schwarz Method

p = 7 p = 3 p = 1
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C = By ⊗ Ax + Ay ⊗ Bx ,

C−1 = (Sy ⊗ Sx)(I ⊗ Λx + Λy ⊗ I )−1(ST
y ⊗ ST

x ) FDM

• Extend box-like element by a single node to create

subdomains.

• Construct Āe
i and B̄e

i .

• Solve eigenvalue problem Āi
e
s = λB̄i

e
s to compute Se

i and

Λe
i such that Se

i
T Āi

e
Se
i = Λe

i and Se
i
T B̄e

i S
e
i = I .
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p = 7

p = 3

p = 1
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Multigrid V-cycle

Algorithm 2: Single pass multigrid V-cycle

x = x + M(b − Ax) // smooth

r = b − Ax // re-evaluate residual

rC = PT r // coarsen

eC = A−1
C rC // solve coarse grid problem/re-apply V-cycle

e = PeC // prolongate

x = x + e // update solution

x = x + M(b − Ax) // post smoothing

For Schwarz smoother:

• Residual is not re-evaluated, e.g., r = b.

• No post-smoothing is applied.
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Methods

Flexible PCG used as outer solver. Common BoomerAMG settings:

V-cycle + HMIS. Preconditioner methods:

• ASM: Additive Schwarz, single cycle BoomerAMG

• RAS: Restrictive additive Schwarz, single cycle BoomerAMG

• SEMFEM: precondition with low-order FEM, single cycle

BoomerAMG

• CHEBY: 2nd order Chebyshev-accelerated Jacobi, two cycle

BoomerAMG

• CHEBY+ASM: 1st order Chebyshev-accelerated additive

Schwarz, single cycle BoomerAMG

• CHEBY+RAS: 1st order Chebyshev-accelerated restrictive

additive Schwarz, single cycle BoomerAMG
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Kershsaw Mesh

Left: ε = 1.0, right: ε = 0.3. Vary element count from E = 123 to

E = 483, all p = 7. Reduce relative residual tolerance by 10−8.

Single node Summit, CPU only (42 IBM Power9).
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146 Pebble Case

• (E , p) = (62132, 7), pressure

tolerance 10−4 residual

reduction

• Solution projection for

pressure initial guess

• Compare CPU and GPU

strong scaling on Summit

(42 IBM Power9 CPUs + 6

NVIDIA V100 GPUs/node)
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GPU Scaling Study
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CPU Scaling Study
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Conclusion

• On GPU, Chebyshev-accelerated Schwarz schemes outperform

and outscale both Schwarz and Chebyshev-accelerated Jacobi

schemes.

• On CPU, Chebyshev-accelerated Schwarz schemes

underperform Chebyshev-accelerated Jacobi schemes for low

processor count.

• FDM based Schwarz solves shift the work per depth ratio,

leading to better strong scaling (Amdahl’s Law)

• Relative preconditioner performance is heavily impacted by

the specific case, mesh aspect ratio, etc.
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nekRS

• Fast, scalable open-source Navier Stokes solver

• MPI+X hybrid parallelism supporting CUDA, HIP, OpenCL,

and OpenMP

• Visit and Paraview support for data analysis and visualization

• Started as a fork of libParanumal

(https://github.com/paranumal/libparanumal)

• Available: https://github.com/nek5000/nekrs
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