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Poisson

• Poisson solve encompasses the majority of the solution time

• Spectral element (SE): E elements with polynomial degree p,
n ≈ Ep3 unknowns and O(Ep6) nonzeros

• Matrix-free is a must: exploit tensor-product-sum
factorization, O(Ep4) cost to apply matrix-vector
product1

• Fast solvers require preconditioning: multigrid!

1Deville, Fischer, and Mund, High-order methods for incompressible fluid
flow.



Multigrid

Algorithm 1 Multigrid V-cycle

x = x0 + presmooth(A, x0, b)
r = b − Ax
rC = PT r
eC = A−1

C rC // solve coarse system/re-apply multigrid
e = PeC
x = x + e
x = x + postsmooth(A, x , b)



1st Kind Chebyshev Smoother23

Algorithm 2 Chebyshev smoother, 1st kind
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x0 = x , r0 = S(b − Ax0), d0 =
1

θ
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for i = 1, . . . , k − 1 do
x i = x i−1 + d i−1

r i = r i−1 − SAd i−1, ρi =
1

2σ − ρi−1

d i = ρiρi−1d i−1 +
2ρi
δ

r i
end for
xk = xk−1 + dk−1

return xk

2Adams et al., “Parallel multigrid smoothing: polynomial versus
Gauss–Seidel”.

3Kronbichler and Ljungkvist, “Multigrid for matrix-free high-order finite
element computations on graphics processors”.



4th Kind Chebyshev Smoother4

Algorithm 3 Chebyshev smoother, (Opt.) 4th kind

x0 = x , r0 = b − Ax0

d0 =
4
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λmax
r0

for i = 1, . . . , k − 1 do
x i = x i−1 + βid i−1, r i = r i−1 − Ad i−1

d i =
2i − 1

2i + 3
d i−1 +

8i + 4

2i + 3
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Sr i

end for
xk = xk−1 + βkdk−1

return xk

• 4th kind: βi := 1

• Opt. 4th kind: βi from optimization

• No ad-hoc λmin parameter, same complexity

• Could still optimize λmin in 1st kind, multiple RHS
4Lottes, “Optimal polynomial smoothers for multigrid V-cycles”.



V-cycle Error Bounds

C := ||A−1 − PA−1
c PT ||2A,S := sup

||f ||S≤1
||(A−1 − PA−1

c PT )f ||2A. (1)

V-cycle contraction factor:

||E ||2A ≤
C

C + γ−1
(2)

= V (C , k) (3)

γ = sup
0<λ≤1

λ p(λ)2

1− p(λ)2
. (4)

e.g., 4th kind:
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3
k(k + 1) (5)



One-sided V-cycle

• Full, symmetric V-cycle contraction factor: ||E ||2A ≤ V (C , k)

• One-sided V-cycle contraction factor: ||E ||A ≤
√
V (C , k̃)

• Order k full V-cycle has same complexity as order k̃ = 2k
one-sided V-cycle

• Better use one-sided (higher order) V-cycle at same cost?

Question we’d like to answer:

||E ||2A(C , k)
?
≥ ||E ||A(C , 2k) (6)

Easier question:

V (C , k)
?
≥

√
V (C , 2k) (7)







Finite Difference

−∇2u = f for u, f ∈ Ω ⊂ R2 7→ R. (8)

• Ω := [0, 1]2, u|∂Ω = 0.

• n = 128, nx = n/ε, ny = nε, ε = 1, 8.

• (nxc + 1)× (nyc + 1), n∗c = n∗/R, R = 2, 16.

• u(x , y) = sin(3πx) sin(4πy) + g , g random satisfying
g |∂Ω = 0.

• Iterate until 10−6 relative residual tolerance, or 1,000
iterations.

• Use two-level geometric MG with Chebyshev-accelerated
Jacobi smoothing as preconditioner for KSP.







Finite Difference

ε Factor Lowest Matvec Cost Solver Matvecs Iterations

1 2 1st Cheb, λoptmin, Jacobi(2), V 23 4
2 2 1st Cheb, λoptmin, Jacobi(3), V 327 41
4 2 4th Cheb, Jacobi(4), ↘ 317 53
8 2 4th

opt Cheb, Jacobi(1), V 535 134

1 16 4th Cheb, Jacobi(16), ↘ 107 6
2 16 4th

opt Cheb, Jacobi(6), ↘ 383 48

4 16 1st Cheb, λoptmin, Jacobi(4), V 699 70
8 16 4th

opt Cheb, Jacobi(20), ↘ 1341 61



Navier-Stokes

(a) (b)

pb1568 (a) 67 pebble (b)

E 524K 122 K

p 7 7

n 180M 42M

P 72 18

n/P 2.5M 2.3M

• 1568 pebble (a)5, and 67 pebble (b)6

• Solve pressure Poisson using PGMRES(15) and solution
projection7.

• 10−4 residual tolerance, 2,000 timesteps

5Lan et al., “All-hex meshing strategies for densely packed spheres”.
6Reger et al., “Large Eddy Simulation of a 67-Pebble Bed Experiment”.
7Fischer, “Projection techniques for iterative solution of Ax= b with

successive right-hand sides”.







Navier-Stokes Summary

Case Fastest Solver TS Iterations
TD

TS

Kershaw(ε = 1) 1st Cheb, λoptmin, RAS(2) 0.09 8 1.75
Kershaw(ε = 0.3) 1st Cheb, λoptmin, RAS(5) 0.67 28 1.35
Kershaw(ε = 0.05) 1st Cheb, λoptmin, RAS(6) 2.60 95 1.62
pb146 4th

opt Cheb, RAS(4) 0.15 5.3 1.17
pb67 4th

opt Cheb, RAS(6) 0.47 16.0 1.40
pb1568 4th

opt Cheb, ASM(5) 0.15 3.8 1.17

Kershaw (ε = 1) 1st Cheb, λoptmin, RAS(2), V 0.09 8 1.75
Kershaw (ε = 0.3) 1st Cheb, λoptmin, RAS(5), V 0.67 28 1.35
Kershaw (ε = 0.05) 4th

opt Cheb, RAS(12), ↘ 2.40 88 1.75

pb146 4th
opt Cheb, RAS(4), V 0.15 5.3 1.17

pb67 4th
opt Cheb, RAS(12), ↘ 0.37 12.5 1.81

pb1568 4th Cheb, ASM(12), ↘ 0.14 3 1.27

V

V , ↘

Figure: TS : solution time of fastest solver. TD solution time of nekRS
default, 1st Cheb, ASM(3) V . V with k Chebyshev order has same
complexity ↘ with order 2k Chebyshev per iteration. Top half of table
looks at fastest solver using full V-cycle. Bottom half of table looks at
fastest solver.



Conclusion

• Speedup Navier-Stokes pressure Poisson solve around 15-30%
relative to default nekRS solver.

• 4th and opt. 4th kind Chebyshev smoothers generally show
improvement over 1st kind Chebyshev smoothing8.

• Adapt Lottes’s error bounds to determine where to use the
full V-cycle versus half V-cycle.

• Continue to reduce pressure on coarse grid solve by reducing
the iteration count, which should increasingly pay-off at scale.

8Lottes, “Optimal polynomial smoothers for multigrid V-cycles”.



Ongoing Work

• Tuning pMG solver params:
https://tinyurl.com/nekrs-tune-one-sided

• 4th and Opt. 4th Kind Chebyshev Smoother implementation
in AMG solvers: https://tinyurl.com/hypre-opt-cheb,
https://tinyurl.com/trilinos-opt-cheb

• Porting those improvements from Hypre into nekRS:
https://tinyurl.com/nekrs-amg-improv

• nekRS https://github.com/Nek5000/nekRS

https://tinyurl.com/nekrs-tune-one-sided
https://tinyurl.com/hypre-opt-cheb
https://tinyurl.com/trilinos-opt-cheb
https://tinyurl.com/nekrs-amg-improv
https://github.com/Nek5000/nekRS

