Solver Development in nekRS: Optimal Chebyshev Smoothers and One-sided V-cycles

Malachi Phillips¹ Paul Fischer^{1,2,3}

¹Department of Computer Science, University of Illinois at Urbana-Champaign

²Mathematics and Computer Science, Argonne National Laboratory, Lemont, IL 60439

³Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign

Poisson

- Poisson solve encompasses the majority of the solution time
- Spectral element (SE): *E* elements with polynomial degree *p*, $n \approx Ep^3$ unknowns and $\mathcal{O}(Ep^6)$ nonzeros
 - Matrix-free is a must: exploit tensor-product-sum factorization, $\mathcal{O}(Ep^4)$ cost to apply matrix-vector product¹
 - Fast solvers require preconditioning: multigrid!

Multigrid

Algorithm 1 Multigrid V-cycle

$$\begin{split} \underline{x} &= \underline{x}_{0} + \text{presmooth}(A, \underline{x}_{0}, \underline{b}) \\ \underline{r} &= \underline{b} - A\underline{x} \\ \underline{r}_{C} &= P^{T}\underline{r} \\ \underline{e}_{C} &= A_{C}^{-1}\underline{r}_{C} // \text{ solve coarse system/re-apply multigrid} \\ \underline{e} &= P\underline{e}_{C} \\ \underline{x} &= \underline{x} + \underline{e} \\ \underline{x} &= \underline{x} + \text{postsmooth}(A, \underline{x}, \underline{b}) \end{split}$$

・ロト ・西ト ・ヨト ・ヨー うへぐ

1st Kind Chebyshev Smoother²³

Algorithm 2 Chebyshev smoother, 1st kind $\theta = \frac{1}{2}(\lambda_{max} + \lambda_{min}), \ \delta = \frac{1}{2}(\lambda_{max} - \lambda_{min}), \ \sigma = \frac{\theta}{\delta}, \ \rho_0 = \frac{1}{2}$ $\underline{x}_0 = \underline{x}, \underline{r}_0 = S(\underline{b} - A\underline{x}_0), \ \underline{d}_0 = \frac{1}{\alpha}\underline{r}_0$ for i = 1, ..., k - 1 do $x_i = x_{i-1} + d_{i-1}$ $\underline{r}_{i} = \underline{r}_{i-1} - SA\underline{d}_{i-1}, \ \rho_{i} = \frac{1}{2\sigma - \rho_{i-1}}$ $\underline{d}_{i} = \rho_{i}\rho_{i-1}\underline{d}_{i-1} + \frac{2\rho_{i}}{\kappa}\underline{r}_{i}$ end for $\underline{x}_k = \underline{x}_{k-1} + \underline{d}_{k-1}$ return x_{k}

²Adams et al., "Parallel multigrid smoothing: polynomial versus Gauss–Seidel".

4th Kind Chebyshev Smoother⁴

Algorithm 3 Chebyshev smoother, (Opt.) 4th kind

$$\begin{split} \underline{x}_0 &= \underline{x}, \ \underline{r}_0 = \underline{b} - A\underline{x}_0\\ \underline{d}_0 &= \frac{4}{3} \frac{1}{\lambda_{max}} \underline{r}_0\\ \text{for } i &= 1, \dots, k-1 \text{ do}\\ \underline{x}_i &= \underline{x}_{i-1} + \beta_i \underline{d}_{i-1}, \ \underline{r}_i &= \underline{r}_{i-1} - A\underline{d}_{i-1}\\ \underline{d}_i &= \frac{2i-1}{2i+3} \underline{d}_{i-1} + \frac{8i+4}{2i+3} \frac{1}{\lambda_{max}} S\underline{r}_i\\ \text{end for}\\ \underline{x}_k &= \underline{x}_{k-1} + \beta_k \underline{d}_{k-1}\\ \text{return } \underline{x}_k \end{split}$$

- 4th kind: $\beta_i := 1$
- Opt. 4th kind: β_i from optimization
- No ad-hoc λ_{min} parameter, same complexity
- Could still optimize λ_{min} in 1st kind, multiple RHS

V-cycle Error Bounds

$$C := ||A^{-1} - PA_c^{-1}P^{T}||_{A,S}^2 := \sup_{||f||_{S} \le 1} ||(A^{-1} - PA_c^{-1}P^{T})f||_{A}^2.$$
(1)

V-cycle contraction factor:

$$||E||_A^2 \le \frac{C}{C + \gamma^{-1}}$$

$$= V(C, k)$$
(2)
(3)

$$\gamma = \sup_{0 < \lambda \le 1} \frac{\lambda \, p(\lambda)^2}{1 - p(\lambda)^2}.$$
(4)

e.g., 4th kind:

$$\gamma_4^{-1} = \frac{4}{3}k(k+1) \tag{5}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

One-sided V-cycle

- Full, symmetric V-cycle contraction factor: $||E||_A^2 \leq V(C,k)$
- One-sided V-cycle contraction factor: $||E||_{\mathcal{A}} \leq \sqrt{V(\mathcal{C}, \tilde{k})}$
- Order k full V-cycle has same complexity as order $\tilde{k} = 2k$ one-sided V-cycle
- Better use one-sided (higher order) V-cycle at same cost?

Question we'd like to answer:

$$||E||_{A}^{2}(C,k) \stackrel{?}{\geq} ||E||_{A}(C,2k)$$
 (6)

Easier question:

$$V(C,k) \stackrel{?}{\geq} \sqrt{V(C,2k)} \tag{7}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Finite Difference

$$-\nabla^2 u = f \text{ for } u, f \in \Omega \subset \mathbb{R}^2 \mapsto \mathbb{R}.$$
 (8)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$\Omega := [0,1]^2$$
, $u|_{\partial\Omega} = 0$.

•
$$n = 128$$
, $n_x = n/\varepsilon$, $n_y = n\varepsilon$, $\varepsilon = 1, 8$.

•
$$(n_{x_c}+1) \times (n_{y_c}+1)$$
, $n_{*_c} = n_*/R$, $R = 2, 16$.

- $u(x, y) = \sin(3\pi x)\sin(4\pi y) + g$, g random satisfying $g|_{\partial\Omega} = 0$.
- Iterate until 10^{-6} relative residual tolerance, or 1,000 iterations.
- Use two-level geometric MG with Chebyshev-accelerated Jacobi smoothing as preconditioner for KSP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Finite Difference

ε	Factor	Lowest Matvec Cost Solver	Matvecs	Iterations
1	2	1^{st} Cheb, λ_{min}^{opt} , Jacobi(2), V	23	4
2	2	1^{st} Cheb, λ_{min}^{opt} , Jacobi(3), V	327	41
4	2	4 th Cheb, Jacobi(4), 🔀	317	53
8	2	4 th _{opt} Cheb, Jacobi(1), V	535	134
1	16	4 th Cheb, Jacobi(16), 🏹	107	6
2	16	4_{opt}^{th} Cheb, Jacobi(6), \searrow	383	48
4	16	1^{st} Cheb, λ_{min}^{opt} , Jacobi(4), V	699	70
8	16	4 th _{opt} Cheb, Jacobi(20), 🔪	1341	61

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

	pb1568 (a)	67 pebble (b)		
E	524K	122 K		
p	7	7		
n	180M	42M		
P	72	18		
n/P	2.5M	2.3M		

- 1568 pebble $(a)^5$, and 67 pebble $(b)^6$
- Solve pressure Poisson using PGMRES(15) and solution projection⁷.
- 10^{-4} residual tolerance, 2,000 timesteps

⁵Lan et al., "All-hex meshing strategies for densely packed spheres". ⁶Reger et al., "Large Eddy Simulation of a 67-Pebble Bed Experiment". ⁷Fischer, "Projection techniques for iterative solution of Ax= b with successive right-hand sides".

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

| ◆ □ ▶ ★ □ ▶ ★ 三 ▶ ★ □ ▶ ◆ □ ● ● ○ ○ ○ ○

Navier-Stokes Summary

	Case	Fastest Solver	Ts	Iterations	$\frac{T_D}{T_S}$
Ví	$Kershaw(\varepsilon=1)$	1^{st} Cheb, λ_{min}^{opt} , RAS(2)	0.09	8	1.75
	Kershaw($\varepsilon = 0.3$)	1^{st} Cheb, λ_{min}^{opt} , RAS(5)	0.67	28	1.35
Į	Kershaw($\varepsilon = 0.05$)	1^{st} Cheb, λ_{min}^{opt} , RAS(6)	2.60	95	1.62
	pb146	4 th _{opt} Cheb, RAS(4)	0.15	5.3	1.17
	pb67	4 th _{opt} Cheb, RAS(6)	0.47	16.0	1.40
,	pb1568	4 th _{opt} Cheb, RAS(6) 4 th _{opt} Cheb, ASM(5)	0.15	3.8	1.17
$V \setminus c$	Kershaw $(arepsilon=1)$	1^{st} Cheb, λ_{min}^{opt} , RAS(2), V 1^{st} Cheb, λ_{min}^{opt} , RAS(5), V	0.09	8	1.75
, x	Kershaw ($\varepsilon = 0.3$)	1^{st} Cheb, λ_{min}^{opt} , RAS(5), V	0.67	28	1.35
	Kershaw ($\varepsilon = 0.05$)	4_{opt}^{th} Cheb, RAS(12), \searrow	2.40	88	1.75
Í	pb146	4 th _{opt} Cheb, RAS(4), V	0.15	5.3	1.17
	pb67	4_{opt}^{th} Cheb, RAS(12), \searrow	0.37	12.5	1.81
l	pb1568	4 th Cheb, ASM(12), 📐	0.14	3	1.27

Figure: T_S : solution time of fastest solver. T_D solution time of nekRS default, 1st Cheb, ASM(3) V. V with k Chebyshev order has same complexity \searrow with order 2k Chebyshev per iteration. Top half of table looks at fastest solver using full V-cycle. Bottom half of table looks at fastest solver.

Conclusion

- Speedup Navier-Stokes pressure Poisson solve around 15-30% relative to default nekRS solver.
- 4th and opt. 4th kind Chebyshev smoothers generally show improvement over 1st kind Chebyshev smoothing⁸.
- Adapt Lottes's error bounds to determine *where* to use the full V-cycle versus half V-cycle.
- Continue to *reduce* pressure on coarse grid solve by reducing the iteration count, which should increasingly pay-off *at scale*.

⁸Lottes, "Optimal polynomial smoothers for multigrid V-cycles" is a second se

Ongoing Work

- Tuning pMG solver params: https://tinyurl.com/nekrs-tune-one-sided
- 4th and Opt. 4th Kind Chebyshev Smoother implementation in AMG solvers: <u>https://tinyurl.com/hypre-opt-cheb</u>, <u>https://tinyurl.com/trilinos-opt-cheb</u>

- Porting those improvements from Hypre into nekRS: https://tinyurl.com/nekrs-amg-improv
- nekRS https://github.com/Nek5000/nekRS